Cytosine Unstacking and Strand Slippage at an Insertion–Deletion Mutation Sequence in an Overhang-Containing DNA Duplex

نویسندگان

  • Swati R. Manjari
  • Janice D. Pata
  • Nilesh K. Banavali
چکیده

Base unstacking in template strands, when accompanied by strand slippage, can result in deletion mutations during strand extension by nucleic acid polymerases. In a GCCC mutation hot-spot sequence, which was previously identified to have a 50% probability of causing such mutations during DNA replication by a Y-family polymerase, a single-base deletion mutation could result from such unstacking of any one of its three template cytosines. In this study, the intrinsic energetic differences in unstacking among these three cytosines in a solvated DNA duplex overhang model were examined using umbrella sampling molecular dynamics simulations. The free energy profiles obtained show that cytosine unstacking grows progressively more unfavorable as one moves inside the duplex from the 5'-end of the overhang template strand. Spontaneous strand slippage occurs in response to such base unstacking in the direction of both the major and minor grooves for all three cytosines. Unrestrained simulations run from three distinct strand-slipped states and one non-strand-slipped state suggest that a more duplexlike environment can help stabilize strand slippage. The possible underlying reasons and biological implications of these observations are discussed in the context of nucleic acid replication active site dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel mechanism generating short deletion/insertions following slippage is suggested by a mutation in the human alpha2-globin gene.

A novel mechanism generating short deletion/insertions is described based on a mutation in the human alpha2-globin gene. A deletion of 9 bp (codons 39-41) is replaced by an eight nucleotide insertion, duplicating the adjacent downstream sequence. We propose that the mutation arose by slipped strand mispairing (SSM), creating a single-stranded loop, followed by DNA elongation, strand breathing a...

متن کامل

Microsatellite (SSR) amplification by PCR usually led to polymorphic bands: Evidence which shows replication slippage occurs in extend or nascent DNA strands

Microsatellites or simple sequence repeats (SSRs) are very effective molecular markers in population genetics, genome mapping, taxonomic study and other large-scale studies. Variation in number of tandem repeats within microsatellite refers to simple sequence length polymorphism (SSLP); but there are a few studies that are showed SSRs replication slippage may be occurred during in vitro amplifi...

متن کامل

Cleavage of single strand RNA adjacent to RNA-DNA duplex regions by Escherichia coli RNase H1.

RNase H1 from Escherichia coli cleaves single strand RNA extending 3' from an RNA-DNA duplex. Substrates consisting of a 25-mer RNA annealed to complementary DNA ranging in length from 9-17 nucleotides were designed to create overhanging single strand RNA regions extending 5' and 3' from the RNA-DNA duplex. Digestion of single strand RNA was observed exclusively within the 3' overhang region an...

متن کامل

Branch capture reactions: displacers derived from asymmetric PCR.

Branch capture reactions (BCR) contain three DNA species: (i) a recipient restriction fragment terminating in an overhang, (ii) a displacer strand containing two adjacent sequences, with one complementary to the overhang and to contiguous nucleotides within the recipient duplex and (iii) a linker which is complementary to the second displacer sequence. Branched complexes containing all three sp...

متن کامل

Recombination mediated by vaccinia virus DNA topoisomerase I in Escherichia coli is sequence specific.

Specialized type I topoisomerases catalyze DNA strand transfer during site-specific recombination in prokaryotes and fungi. As a rule, the site specificity of these systems is determined by the DNA binding and cleavage preference of the topoisomerase per se. The Mr 32,000 topoisomerase I encoded by vaccinia virus (a member of the eukaryotic family of "general" type I enzymes) is also selective ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014